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THE BEHAVIOR OF A FLAT ELLIPTICAL CRACK
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AbIInct-A method devolvilll upon the computation of certain influence coefficients is herein presented for
determiJtina the material displacements and stress in the vicinity of the edae of an elliptic crack within an
arbitrarily anisotropic elastic body. In particular. compact line intqral expressions for the stress intensity
factors aboutlbe circumference of the crack and for the magnitude of the crack face displacement are derived.
In all cases. the elastic body is assumed subject to uniform stress states far from the crack. Numerical mutts
for a special example are also shown.

INTRODUCTION

Almost all of the extant treatments of elastic inclusions and cracks draw upon the concepts
developed by Eshelby in his now classic paper[l). which deals mostly with inclusions and
inhomogeneities in isotropic bodies. Walpole [2] has drawn upon this formalism to generate an
iteration scheme for obtaining the strain of an inclusion in an anisotropic body to any desired
degree of accuracy. but his end results are not given in closed form. Willis[3] specifically
addressed the problem of the stress field around an elliptical crack in a linear anisotropic elastic
medium. His work is not directly applicable to cases of transverse isotropy owing to
degeneracies which occur in his solutions when applied to transverse isotropy. Mura and Lin[4]
restricted their analysis to cracks in cubic media. and the work of Kassir and Sib[5] on cracks
in transversely isotropic bodies contains some serious errors. (One implication of this latter
research is that the crack faces undergo no displacement for samples subject to tension
perpendicular to the crack plane. a physical impossibility. In addition, stress intensity factors
calculated from their results may be imaginary.) The tools of dislocation theory[6l have also
been brought to bear on this problem, but these results require calculations of multiple
integrals, a procedure thought not to be as easy to implement as that foUowed below. Laws[l3]
develops the theory of interfacial discontinuities to handle arbitrary cavities in anisotropic
media, of which flat cracks are a special case.

The method of anisotropic crack analysis adopted in the present study is an extension of the
method developed by Irwin[7] for analyzing flat cracks in isotropic bodies.;

ANALYSIS

The planform of the crack is elliptical and characterized by semi-axes a and b, a ~ b. The
planform aspect ratio is 'Y'" bla, 'Y:S 1. A crack coordinate system (Xh X:b X3) =(x. Y. z) is
chosen so that the x-axis coincides with major axis and the z-axis is normal to the plane of the
crack. With respect to this coordinate system. the body is characterized by elastic constants
M/lki. Far from the crack. uniform stresses uij are applied.

It is helpfUl to regard the crack as the limiting member of a certain family of oblate
ellipsoidal cavities. These cavities are characterized by semi-axes a, b, c, where C varies among
the various members of this family. The crack is the limit member of this family as the
thickness aspect ratio a =clb -.0. Consideration of these cavities will allow important
conclusions to be drawn about the nature of the crack face displacements under the action of
external stresses.

Eshelby[l] has proved an important theorem about the strains of an ellipsoidal in­
homogeneity in an anisotropic body subject to uniform far stress: the inclusion strains are

tThis work was conducted while the author was a Research Assistant in the Division of Applied Sciences. Harvard
University, Cambridae. MA 02138, U.S.A.

*1 am indebted to J. R. Rice for a crucial suaestion matina this extension possible.
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uniform. This theorem applies to ellipsoidal cavities, which are inhomogeneities with vanish­
ingly small stiffnesses, and further implies that the cavity interface displacements Ui will be
linear functions of the coordinates x, y, z:

(1)

For this expression to remain meaningful in the limit of a ~ 0, it is useful to introduce the
coefficient fJ, defined by

(2)

when 0' is a typical stress, and E one of the moduli of the body. For v_bill CI, the inclusion
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remainina strain components ~{3' .~, '~3:
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(3)

From OH3), it therefore foDows that for small Cl and in particular for cracks, the upper crack
face displacements associated with the siqular components are

(4)

and that

(5)

The IJI will be called the crack displacement magllitlldes.
The means for determining the fJl lie within a set of influence coefficients Cj/(, whose

existence is implied by the linearity of the problem. These coefficients connect the displace­
ment magnitudes with the applied stress:

(6)

(7)

The stress components other tban O'it have no influence on the fJ,. The bulk of this section will
be devoted to determinina the matrix (Cit). The matrix (Cj/() is symmetric, as is shown in
Appendix 1.

Associated with the presence of the crack is a defect ~ in the potential enerlY of the body.
Expressions for the matrix (Cit) are obtained by computing ~ in two dilerent ways and
equatina the dilerent, but equivalent, expressions.

F'U'st, note that f must equal the work done by the applied stress actina (gradually) through
the displacement of eacb crack face. Thus

~ =2 . ~ ff O'it Ut dx dy =~ CJtfJlfJt •j 1T(ab )312.-~
A second expression for f is developed via exploitation of the so-called M surface integral

M =ffs { Wx . D - {(x . V)U)T - 4T . u} dS (8)
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which bas the same value for all surfaces S that completely enclose the crack[8). Here, I is the
position vector, U is the elastic displacement, T is the surface traction on S, D is the unit
outward normal to S, W is the strain enel'JY density, and \' is the aradieDt operator. Budiansky
and Rice[8) have interpreted this integral in terms of an enerlY release rate associated with the
self-similar growth of the crack in which each point of the crack edge r recedes radially from
the origin at a rate proportional to its distance therefrom. Specifically

M=a~.

Furthermore, Budiansky and O'Connell[9) show that

M =!. p(s) lim J(s, 8) ds.'1r &-00

(9)

(10)

(A1tho.uab this expression is valid for cracks of arbitrary p1anform, it will be exclusively applied
to elliptical cracks in this study.) Here. p(s) is the perpendicular distance from the origin to the
tangent' line to rats, and J(s, 3) is precisely Rice's well-known J-integral of two-dimensional
fracture mechanics, subject to the understanding that J(s) is to be evaluated in the plane P(s)
which is normal to the crack plane (x-y plane) at s (see Fig. 1). The path C in P(s) on which J
is to be evaluated is a circle, centered at s, of radius 8 taken in the limit as 8~ O. In this limit,
conditions of plane strain and antipiane shear are approached in P(s)[9).

The purpose of the analysis to be presented in the following parqraphs is to resolve further
the analytic structure of J(s, 8) to permit an explicit computation of M. Begin by parameterizing
the points (f, y) on the edge of the crack by means of the parameter .:

Then

Ref. [9).

(i, j) = (a cos., b sin .).

p(s)ds =ab d.
z

FJI. 1. Crack based coordinates.

(11)

(12)
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At each point s on the edge of the crack, there is a right-handed edge coordinate system
(xi, xi, x~) =(x', y', z') oriented so that the x'·axis is normal to the edge, the z'·axis is tangent to
it, and z = y'. The intersection of the flat crack and the x'-y' plane is a two-dimensional crack
whose near tip stresses and displacements are amenable to the 2-D analysis of Refs. [10,11].

Let the crack tip displacements in the x'-y' plane be Uj. Asymptotic forms for these
displacements can be derived by considering a point (x, y) in the crack coordinate system on the
upper face of the crack near a point (i, j) on the edge in the same (x'-y') plane. If { is the
distance between the two, then

x=i-'nJC

y = j - {n y

(13)

where (nJC! ny ) are the components of the unit normal to r passina throqh (x, y). Substitution of
eqn (13) into eqn (4) and transformina to the edge coordinate system gives

U; == ~(.,. cos q,(Jt +sin q,(Ji)(.,.2 cos2• +sin2.)-t'·y'(2a()

U~=~ [- sin fJfJl +.,. cos .~i)('Y2 cos2• + sin2.)-II.y'(2a()

Letting

(14)

and

permits the foUowing compact expression for 1M Ui to be written

(16)

(17)

Next, consider the stress sinplarities and their associated stress intensity factors K.. KIl,

Km at the tip. In order to continue using subscript notation and the summation convention,
define k, by

(18)

which are related to the limits

(19)

where the (Til are the components of (Tit referred to the x~ system.
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In Appendix 2, an expression for the ki is derived in terms of the {3~ (eqn 6 of Appendix 2):

(20)

Here, Qij =Qp is a set of six real constants which are (knownHunctions of the elastic constants
M~jId; i.e. the MljId referred to the edge coordinate system. The symmetry of QII is shown in
Appendix 2. In terms of this matrix, the J-integral is given by eqn (8) of Appendix 2:

(21)

Substitution of this into (10) yields

(22)

Integrating, using (16), yields the promised second expression for the potential energy defect t

(23,

Since the (3's are arbitrary and (QI/) is symmetric, comparison of the two expressions for t, eqn
(7) and (23), yields

(24)

valid for circular or elliptic cracks.
The crack displacements are now unambiguously determined by the applied stress state via

(24) and (6). Furthermore, the stress intensity factors ki at each point along the crack edge are
known:

(25)

In all but the simplest of cases, the explicit calculations of the matrices Qijo Clio etc. require
considerable assistance from a high speed digital computer.

TRANSVERSE ISOTROPY
One type of symmetry is simple enough so that the crack displacements, etc. can be

explicitly calculated by hand without being too trivial to be of interest. This is the case of an
elliptical crack parallel to the plane of isotropy of a transversely isotropic body. The major
ellipse axis is parallel to the x-axis. In keeping with our earlier convention that the plane of
isotropy coincides with the x-y plane of our laboratory frame, the matrix (M/) has the
following form:

SS Vol. 14, No. 11-1>

1M=­- E o
2(1 + JlI)

r
o

o

(26)
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The five independent elastic constants are E, E2, VIoV2, O2; it was convenient to let

E
Ot = 2(1 + Vt)'

For sucb a confiauration, the components ClI involve the foUowina combinations of elastic
constants

T =1+ Vt
vf

Rt ={E(k)[k2
_ (1- ~)] + 12K(k)(I- ~)}/k2

R2 ={B(k>[ (1- ~)~l+ kZ] -1ZK(k)(1-¥)}/k2
,

(27)

(28)

(29)

K(k), B(k) are, respectively, the complete elliptic intearais of the first and second kinds of the
arsument k =v(l - 'Y2

), Then

Cijt = 0, i;t j

cll =2SV'Y/Rt

Cli =2Sv'YIRz

Cli =2Sv'YIE(k)· ~((l/~l~tl).

In the limit of b -+ a (a circular flaw), the limiting forms of Rio Rz, B(k) need to be used:

B(O) =1r/2

Rt =Rz=t [1+ ~J

In the limit of b -+0 Oona ribbon~like filaments), the foUowing limits are used:

E(l) =1

S
Rt=T

Rz=1.

If a test stress O'~ =0' is applied, then

If a test stress of .,.~ = .,. is applied, then

k- V1r13I2COS~
.,.Va - Rt(sin2~ + 12cos~ )1/4

~= -~""tl2sin~ ,S
.,.ya Rt(sin4»+1zCOS c,,)i1a T'

(30)

(31)

(32)

(33)

(34)

(35)
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F"1I· 3. SIreU iDteuity fllClOl'S for a circullr crack in a transversely isotropic body, mode Ideformation. Atest
stmI of a '"a;'. is apptied. The body is cllarat:terized by moduli E,jB = 2, GtlB· I. PI'" O. 1/1'" 0.4.
Calculationure made for the plane of isotropy bodsperpelldicu1ar (solid curves) and parallel (daabed curve) to

the plane of isotropy.

If a test stress of T; =Tis applied, then

KII = V11' 'Y 1/2 sin ~
TVa R~sinz t/J +1zcos t/J )1,.

Km = VlI''Y3I2cos~
TVa R~$inzt/J+."zcos .)114,

(36)

(37)

Values of the K's as functions of polar angle 8 are indicated by the dotted line curves of
FIlS. 2 and 3. and for a patticular solid characterized by E-JE =2. VI =O. V, =0.4. G-JE =1.

A similar calculation for the case of a circular crack embedded in the same solid when the
plane of isotropy is ROW perpendicular to the plane of the crack can also be performed. This
calculation must be done numerically. and these results are given by the solid curves of Figs. 2
and 3.t These fiaures indicate that the stress intensity factors for the two cases can be quite
clliferent. This difterence is most pronounced for mode I deformation (Fig. 3). When the crack
plane is parallel to the plane of isotropy. the stress intensity factor KI is independent of tbe
position along the crack edle. strongly contrasting with the considerable dependence of K I witb
position when the crack plane is perpendicular to the plane of isotropy. Note. however, that
when the applied shear is Ti,. the dift'erence between tbe two distributions for KII and Km is
minimal. being at most about 10%.
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APPENDIX 1
Proof tluU the inftlunce cOfJcimts (Cij) are symmetric

The symmetry of (Cit). the matrix defined by eqn (6) of tbe main text. is demonstrated via an application of the
Betti-Rayleiah Theorem. Let u1,. u~, give rise to displacements characterized by fJ/. fJl. respectively. It is easy to see that
fJ/•fJl. also arise when tractions T/, Tl are applied to the surface of the crack, wbere T/ = +u],'1, and r,2 - +Uf3'13 and
there is no stress far from the crack. Let EI2 be the work done by the external forces (I) actina tbrouab displacements (2):

E12= +Lr,'fJliV(Gb)~ (1-~-~) dA

where A is the surface of the crack. From eqn (6), this becomes

Similarly

2lr r.l ab bC I 2E21-T'EV( )a 'JJ,fJt.

But EI2 = E2h so that

c,.{JlfJtl = CltfJ,'fJt2 = CtJlJt1fJl

(Cli - Cij)fJlfJtl = O.

This equation bolds for arbitrary fJ/. fJl. so tbat

as asserted.

APPENDIX 2
The application of 2-D tlwory to flat elliptic crack analysis

The results for two-dimensional crack tip analysis can be used to analyze the elutic behavior of ftat cracks in
anisotropic elutic bodies. As is shown in the main text. under tbe action of external uniform stresses. the crack may
deform into a thin oblate eUipsoid.

The crack is situated in the x-y plane of a coordinate system. defined by the crack, with respect to whicb the body is
characterized by elutic CODItants ~. The crack is so oriented in the x-y plane such that points (f,;) on its edae may ~
parameterized by the anaIe .:

(X,;) = (a cos., b sin.l

where a and b are respectively the semi-major and semi-minor ellipse axes. Eacb point s on the edae defines an edae
coordinate system (x;. xi, xi) - (x', y', z') where the x'-axis is normal to the edae. the z'-axis is tanaent to it. and y' '"' z. The
intersection of the x'-z' plane with the ftat crack is a 2-D crack, whose near-tip displacements and stresses can be
descn'bed in terms of the above theory. The crack tip displacements IIi in (xa are given in Refs. [10,11]:

(Al)

using notation established in these references.
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The quantities ~l inlroduced in eqns (16) and (17) of the main text are related in tbe text to mapitudes of the crack face
displacement. Combinina (AI) with these leads 10

(A2l

wbere the Pit must be evaluated by means of the elastic constants defined with respect to the edle coordinates (xl) and are
defined in Refs. (l0. 11).

lt is often cOlIvenient to obtain a reIIQoa betweeD the ~l and the k,. To this end. separate the various field quantities.
which are all complex in pneral, iato their real and imqinary parts. In particular

PJI< = SJI< + it/ll (A3)

(Njt)-' • U/Il + iV.. (A4)

where. in Refs. [10, 11), it is shown that

14 =2N,,BtJa- (AS)

Combiniq (A3}-{AS) with (Al) leads to

kt =-Y1tQ,Jji (A6)

where

(Qar l
,. SijVt*+tijUjt (A7)

and is entirely known.
When (A6) is substituted into the expressioa for the J·intelra1 of 2·D fracture mechanics <liven by eqn (33) of Ref.

[IOn, it becomes

(AS)

TIre symmttry 01 (Q,,)
When a two-dimeuioaal Grilith craclt is considered. the appropriate matrix Q" is symmetric. The proof of this foBows

by meau of an appticaIioa of the Beai-Rayleip Theorem simiIIr to that presented in Appendix 1 and will not be liven
here. For a semi-iDtlIite craek, it then follows that Q" is s)'lllmetric because the reJaDons ddaiDa the Q" are indepeadent
of craclt pometry. They depend upoo the uympcocic forms for the stlases and stniDs close to the crack tip, and these
forms are the same for semi-infinite and Grillth cracks.


