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THE BEHAVIOR OF A FLAT ELLIPTICAL CRACK
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Abstract—A method devolving upon the computation of certain influence coefficients is herein presented for
determining the material displacements and stress in the vicinity of the edge of an elliptic crack within an
arbitrarily anisotropic elastic body. In particular, compact line integral expressions for the stress intensity
factors about the circumference of the crack and for the magnitude of the crack face displacement are derived.
In all cases, the elastic body is assumed subject to uniform stress states far from the crack. Numerical results
for a special example are also shown.

INTRODUCTION

Almost all of the extant treatments of elastic inclusions and cracks draw upon the concepts
developed by Eshelby in his now classic paper[1], which deals mostly with inclusions and
inhomogeneities in isotropic bodies. Walpole[2] has drawn upon this formalism to generate an
iteration scheme for obtaining the strain of an inclusion in an anisotropic body to any desired
degree of accuracy, but his end results are not given in closed form. Willis[3] specifically
addressed the problem of the stress field around an elliptical crack in a linear anisotropic elastic
medium. His work is not directly applicable to cases of transverse isotropy owing to
degeneracies which occur in his solutions when applied to transverse isotropy. Mura and Lin 4]
restricted their analysis to cracks in cubic media, and the work of Kassir and Sih[5] on cracks
in transversely isotropic bodies contains some serious errors. (One implication of this latter
research is that the crack faces undergo no displacement for samples subject to tension
perpendicular to the crack plane, a physical impossibility. In addition, stress intensity factors
calculated from their results may be imaginary.) The tools of dislocation theory[6] have also
been brought to bear on this problem, but these results require calculations of multiple
integrals, a procedure thought not to be as easy to implement as that followed below. Laws[13]
develops the theory of interfacial discontinuities to handle arbitrary cavities in anisotropic
media, of which flat cracks are a special case.

The method of anisotropic crack analysis adopted in the present study is an extension of the
method developed by Irwin[7] for analyzing flat cracks in isotropic bodies.}

ANALYSIS

The planform of the crack is elliptical and characterized by semi-axes a and b, a = b. The
planform aspect ratio is y=bla, y<1. A crack coordinate system (x,,x;, x3) =(X,¥,2) is
chosen so that the x-axis coincides with major axis and the z-axis is normal to the plane of the
crack. With respect to this coordinate system, the body is characterized by elastic constants
My,. Far from the crack, uniform stresses oj are applied.

It is helpful to regard the crack as the limiting member of a certain family of oblate
ellipsoidal cavities. These cavities are characterized by semi-axes a, b, ¢, where ¢ varies among
the various members of this family. The crack is the limit member of this family as the
thickness aspect ratio a = c/b—0. Consideration of these cavities will allow important
conclusions to be drawn about the nature of the crack face displacements under the action of
external stresses.

Eshelby[1] has proved an important theorem about the strains of an ellipsoidal in-
homogeneity in an anisotropic body subject to uniform far stress: the inclusion strains are

1This work was conducted while the author was a Research Assistant in the Division of Applied Sciences, Harvard
University, Cambridge, MA 02138, U.S.A.
I am indebted to J. R. Rice for a crucial suggestion making this extension possible.

925



926 A. HoOENIG

uniform. This theorem applies to ellipsoidal cavities, which are inhomogeneities with vanish-
ingly small stiffnesses, and further implies that the cavity interface displacements U; will be
linear functions of the coordinates x, y, z:

U=Ax+By+Cz. (N

For this expression to remain meaningful in the limit of a =0, it is useful to introduce the
coefficient g; defined by

c=p V2.2 @

when o is a typical stress, and E one of the moduli of the body. For vanishing a, the inclusion
strains €};, €, ¢), remain bounded and are therefore negligible in comparison with the
remaining strain components €53, €5, eXy:

=g, B
*TFE 2avVy
L2 B
27 E 2avy ®
1 =...°'._L3
B=E aVy'

From (1)=(3), it therefore follows that for small « and in panticular for cracks, the upper crack
face displacements associated with the singular components are

2 2
= gary(1-5-2)
and that
_E. { I = --—1
= 32 [aei) Ny By(81p8y3 + 81p813). )

The B; will be called the crack displacement magnitudes.

The means for determining the B; lie within a set of influence coeflicients C,, whose
existence is implied by the linearity of the problem. These coeflicients connect the displace-
ment magnitudes with the applied stress:

o5 =0Cafr 0B =Ci'o% ()

The stress components other than o3, have no influence on the B8, The bulk of this section will
be devoted to determining the matrix (Cy). The matrix (Cj) is symmetric, as is shown in
Appendix 1.

Associated with the presence of the crack is a defect ¢ in the potential energy of the body.
Expressions for the matrix (Cy) are obtained by computing ¢ in two different ways and
equating the different, but equivalent, expressions.

First, note that £ must equal the work done by the applied stress acting (gradually) through
the displacement of each crack face. Thus

1 . 3

£=2-3 ” a'udexdy=%C,-.ﬁ,ﬂk~§1r(ab)3’2. 0
o the
crack

A second expression for ¢ is developed via exploitation of the so-called M surface integral

M=”s{Wx-n—[(x-vm'r-%r-u}ds ®)
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which has the same value for all surfaces S that completely enclose the crack[8]. Here, x is the
position vector, U is the elastic displacement, T is the surface traction on S, n is the unit
outward normal to S, W is the strain energy density, and V is the gradient operator. Budiansky
and Rice[8] have interpreted this integral in terms of an energy release rate associated with the
self-similar growth of the crack in which each point of the crack edge I' recedes radially from
the origin at a rate proportional to its distance therefrom. Specifically

=g %
M a7 o)

Furthermore, Budiansky and O’Connell[9] show that
M= § p(s)lim J(s, 8) ds. 10)
r 80

(Althongh this expression is valid for cracks of arbitrary planform, it will be exclusively applied
to elliptical cracks in this study.) Here, p(s) is the perpendicular distance from the origin to the
tangent line to I" at s, and J(s, 8) is precisely Rice's well-known J-integral of two-dimensional
fracture mechanics, subject to the understanding that J(s) is to be evaluated in the plane P(s)
which is normal to the crack plane (x-y plane) at s (see Fig. 1). The path C in P(s) on which J
is to be evaluated is a circle, centered at s, of radius & taken in the limit as § > 0. In this limit,
conditions of plane strain and antiplane shear are approached in P(s)([9].

The purpose of the analysis to be presented in the following paragraphs is to resolve further
the analytic structure of J(s, §) to permit an explicit computation of M. Begin by parameterizing
the points (£, ¥) on the edge of the crack by means of the parameter ¢:

(X, 7) = (a cos @, b sin ¢). an
Then
p(s)ds = ab dé (12)
Ref. [9].

y
(o,b,0)
“N
P(s) e
S A
S
U'S u'\ \xl
(c,0,0) P(s)
zl

Fig. 1. Crack based coordinates.
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At each point s on the edge of the crack, there is a right-handed edge coordinate system
(x}, x3, x3) = (x', y', 2') oriented so that the x'-axis is normal to the edge, the z'-axis is tangent to
it, and z = y'. The intersection of the flat crack and the x'-y’ plane is a two-dimensional crack
whose near tip stresses and displacements are amenable to the 2-D analysis of Refs. [10, 11].

Let the crack tip displacements in the x’-y’ plane be U/ Asymptotic forms for these
displacements can be derived by considering a point (x, y) in the crack coordinate system on the
upper face of the crack near a point (%, §) on the edge in the same (x'-y") plane. If { is the
distance between the two, then

(13)

where (n,, n,) are the components of the unit normal to I passing through (x, y). Substitution of
eqn (13) into eqn (4) and transforming to the edge coordinate system gives

Uj=F( cos 8B, +sin B8)(y" cos’ ¢ +sin’ ) v/ 2a0)

U= Z(~sin ¢+ y cos @B:Ny* cos’ 6 +sin’ $)™*V/(2a() (14)
Uj=F Bilsin’ ¢ + 7" cos? $)'/ (2ap).
Letting
¥ cos ¢ 0 sin ¢
(Ry) = (sin’ ¢ + y*cos? @)™ ( 0 (sin* ¢ + y* cos? 9)'? 0 ) (15)
-sin ¢ 0 Y cos ¢
and
Bi= RuBx (16)
permits the following compact expression for the U’ to be written
U= £ BV (Q2ap). an

Next, consider the stress singularities and their associated stress intensity factors K, Ky,
Ky at the tip. In order to continue using subscript notation and the summation convention,

Kn=gk|

try

K=Zk (18)

tn

Km

mia

ks

which are related to the limits

- ky on
£k =lim vamp |oh (19)

kg y'=0 05_‘;

where the o5, are the components of o referred to the x} system.



The behavior of a flat elliptical crack 9229

In Appendix 2, an expression for the k; is derived in terms of the B/ (eqn 6 of Appendix 2):
i == V7 Qubi (20)

Here, Q; = Q; is a set of six real constants which are (known) functions of the elastic constants
My, ie. the My, referred to the edge coordinate system. The symmetry of Q; is shown in
Appendix 2. In terms of this matrix, the J-integral is given by eqn (8) of Appendix 2:

_ 2
lim J(6,8) = =5 5 QuBiBi @

Substitution of this into (10) yields
ad¢_ _7 sy0’ [ f a1 ]
a >0 g rQ,*ﬂ,ﬁkdd’ . (22)
Integrating, using (16), yields the promised second expression for the potential energy defect ¢
- 2
=o'y S [ QuRureds Bt @)

Since the 8’s are arbitrary and (Q) is symmetric, comparison of the two expressions for £, eqn
(7) and (23), yields

-1
Ci=775 j  QuRaRy d, 4)

valid for circular or elliptic cracks.

The crack displacements are now unambiguously determined by the applied stress state via
(24) and (6). Furthermore, the stress intensity factors k; at each point along the crack edge are
known:

k= - \/w Qf;RkC;IIO'rj. (25)

In all but the simplest of cases, the explicit calculations of the matrices Q; Cj; etc. require
considerable assistance from a high speed digital computer.

TRANSVERSE ISOTROPY
One type of symmetry is simple enough so that the crack displacements, etc. can be
explicitly calculated by hand without being too trivial to be of interest. This is the case of an
elliptical crack parallel to the plane of isotropy of a transversely isotropic body. The major
ellipse axis is parallel to the x-axis. In keeping with our earlier convention that the plane of
isotropy coincides with the x-y plane of our laboratory frame, the matrix (M;) has the
following form:

1 -V —W
bt 4 1 il 5
—y, —p L
Va vy "
M= l
E gll‘t 1’1! 0 0
Al +y)
0 N 0
0 0 21+ (26)

§S Vol. 14, No. 11D



930 A. HoENIG

The five independent elastic constants are E, E;, »,,#2, Ga; it was convenient to let

- E _E =G
Gl-2(1+v‘)) H—E’ —G‘.

For such a configuration, the components C; involve the following combinations of elastic

constants
S= \/(-1:2—"'3)\/{(1+v1) -l-—vz)+\/[(l-v‘z);l1--v22]} @0

T= ‘:;I‘.’ ! (28)
R R
29)

(I

K(k), E(k) are, respectively, the complete elliptic integrals of the first and second kinds of the
argument k =1/(1- y%). Then

Ci'=0, i#j
Cii =25VyR,
2 =2SVvR,

C3 =2SVHE®K)- \/ ((.__UH) » )

In the limit of b - a (a circular flaw), the limiting forms of R,, R,, E(k) need to be used:

(30)

EQ)=n/2

R1=R1=‘:‘.[1"‘%].

31

In the limit of b -0 (long ribbon-like filaments), the following limits are used:
E()=1
R=3 32)
Rz =1,

If a test stress o, = o is applied, then

cr\/a --\fg—(“”’;‘)L(sm2 o + y*cos® ¢)'4. (33)

If a test stress of 5, = 7 is applied, then

Kn_ vy

r\/a ~ Risin ¢+7 cos’4) (34)

Km __ —-v=y"sin

™/a R\sin’ ¢ +y*cos’ ¢)

i

(35
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A. A test stress of T= rg is applied B. A test stress of r=r$ is applied

Fig. 2. Stress intensity factors, for a circular crack (radius a) in transversely isotropic body, shear deformation. The body is characterized by
moduli E,/E =2, GyJE =1, », =0, v, = 4, Calculations were made for the plane of isotropy both parallel (dashed line) and perpendicular (solid
curve) to the crack plane.
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Fig. 3. Stress intensity factors for a circular crack in a transversely isotropic body, mode [ deformation. A test

stress nf. o =gy, is applied. The body is characterized by moduli EjJE=2, GyE=1, »,=0, »,=04.

Caiculations are made for the plane of isotropy both perpendicular (solid curves) and parallel (dashed curve) to
the plane of isotropy.

If a test stress of 77, = 7 is applied, then

Ky = v 'Y”z sin ¢ (36)
rvVa Rysin* ¢ + y*cos® )"
Knm__ V#yPcoss 37

Va Risin® @ + y*cos* )"

Values of the K’s as functions of polar angle @ are indicated by the dotted line curves of
Figs. 2 and 3, and for a patticular solid characterized by EJJE=2, »1=0, =04, G/JE=1.

A similar calculation for the case of a circular crack embedded in the same solid when the
plane of isotropy is now perpendicular to the plane of the crack can also be performed. This
calculation must be done numerically, and these results are given by the solid curves of Figs. 2
and 3.7 These figures indicate that the stress intensity factors for the two cases can be quite
different. This difference is most pronounced for mode I deformation (Fig. 3). When the crack
plane is parallel to the plane of isotropy, the stress intensity factor K is independent of the
position along the crack edge, strongly contrasting with the considerable dependence of K; with
position when the crack plane is perpendicular to the plane of isotropy. Note, howevaer, that
when the applied shear is 775, the difference between the two distributions for Ky and Ky is
minimal, being at most about 10%.
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APPENDIX 1
Proof that the influence coefficients (C,,) are symmetric
The symmetry of (Cy), tbe matnx defined by eqn (6) of the main text, is demonstrated via an application of the
Betu-Raylelgh Theorem. Let o};, 0;, gwe rise to displacements characterized by 8. 87, respecuvely Itis my to we that
B/ .B, , also arise when tractions T;', T are applied to the surface of the crack, where T;! =+amp,and T? =+ ohn and
there is no stress far from the crack. Le! £12 be the work done by the external forces (1) acting through displacements (2):

f=+ f ) T}'ﬁ,’%\/(ab)\/ (1 —g— bz) dA

where A is the surface of the crack. From egn (6), this becomes

én= ——12  V(ablabCubipy'.
Similarly

b= %’”’f /(ab)abCaBBi2.
But £;; = £, so that

CuBiBy' = CuBi'B = CuBi' B}

(Cu = C)BB: = 0.

This equation holds for arbitrary ;', 87, so that
Clk = Ck,

as asserted.

APPENDIX 2

The application of 2-D theory to flat elliptic crack analysis

The results for two-dimensional crack tip analysis can be used to analyze the elastic behavior of fiat cracks in
anisotropic elastic bodies. As is shown in the main text, under the action of external uniform stresses, the crack may
deform into a thin oblate ellipsoid.

The crack is situated in the x—y plane of a coordinate system, defined by the crack, with respect to which the body is
characterized by elastic constants M. The crack is so oriented in the x-y plane such that points (£, 7) on its edge may be
parameterized by the angle ¢:

(%, §) = (a cos &, b sin ¢)
where a and b are respectively the semi-major and semi-minor ellipse axes. Each pomt s on the edne defines an edge
coordinate system (xhx;, x3)=(x",y', z") where the x'-axis is normal to the edge, the z’-axis is tangent to it, and y' = z. The

intersection of the x'-z' plane with the flat crack is a 2-D crack, whose near-tip displacements and stresses can be
described in terms of the above theory. The crack tip displacements ; in (x}) are given in Refs. [10, 11]:

ui= 3%2\/ (% af)lm(puB;) (A1)

using notation established in these references.
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The quantities 8; introduced in eqns (16) and (17) of the main text are reiated in the text to magnitudes of the crack face
displacement. Combining (A1) with these leads to

Bi= \—/—12; Im{pyBy) (A2)

where the p; must be evaluated by means of the elastic constants defined with respect to the edge coordinates (x}) and are
defined in Refs. {10, 1].

It is often convenient to obtain a relation between the 8; and the &. To this end, separate the various field quantities,
which are all complex in general, into their real and imaginary parts. In particular

Pix = S ¥ it (A3)
(Np) ™' = Uy +iVy (Ad)

where, in Refs. {10, 11}, it is shown that
k = 2NyB;V a. (AS)

Combining (A3)~(A5) with (A2) leads to
ke ==V 7 Qubi (A6)

where

Q)" = 54V + 4Un (A7)

and is entirely known.
When (A6) is substituted into the expression for the J-integral of 2-D fracture mechanics (given by eqn (33) of Ref.
[10)), it becomes

2
1=-Z22 6. (A8)

The symmetry of (Qy)

When a two-dimensional Griffith crack is considered, the appropriate matrix Qy is symmetric. The proof of this follows
by means of an application of the Betti-Rayleigh Theorem similar to that presented in Appendix 1 and will not be given
here. Fousem-nhuecmk.umfoﬁwsmogusynmeﬂubwuuetheukmmdeﬁnmtheogmmmm
of crack geometry. They depend upon the asymptotic forms for the stresses and strains close to the crack tip, and these
forms are the same for semi-infinite and Griffith cracks.



